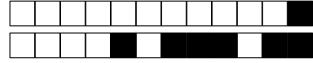


Prof. M. Gastpar

Quiz 4 (Homeworks 7, 8 & 9)

Due on Moodle


on Monday, April 28, 2024, at 23:59.

Quiz 4

SCIPER: **111111**

- This quiz is to be solved individually.
- Try not to use any of the course materials other than the formula collection on a first attempt.
- Once you are done, enter your answers into Moodle. Moodle will give you feedback. You can update your answers as many times as you want before the deadline.
- For each question there is **exactly one** correct answer. We assign **negative points** to the **wrong answers** in such a way that a person who chooses a wrong answer loses **25 %** of the points given for that question.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien		
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren
<input checked="" type="checkbox"/> <input checked="" type="checkbox"/> <input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/> <input checked="" type="checkbox"/>
ce qu'il ne faut PAS faire what should NOT be done was man NICHT tun sollte		
<input checked="" type="checkbox"/>		

Question 1

[2 points] Consider the group $(\mathbb{Z}/207\mathbb{Z}^*, \cdot)$. Find how many elements are in the group.

 128 100 127 132**Question 2**

[3 points] Passing on secrets: Alice has posted her RSA credentials as (m, e) , with m the modulus and e the encoding exponent. As required by RSA, she keeps her decoding exponent d preciously secret. Bob has a message t_1 , RSA-encrypts it using (m, e_1) and passes the resulting cryptogram c_1 on to Carlos. Carlos has a message t_2 , RSA-encrypts it using (m, e_2) to obtain the cryptogram c_2 . Then, Carlos multiplies the two cryptograms, $(c_1 \cdot c_2) \pmod{m}$, and passes this to Alice. Alice applies her regular RSA decryption to $(c_1 \cdot c_2) \pmod{m}$. Under what condition is the result of this decryption exactly equal to the product $(t_1 \cdot t_2) \pmod{m}$?

- If d is prime and $(e_1 + e_2) \pmod{m} = 1$.
- If for some integer ℓ , we have $e_1 e_2 d = \ell \phi(m) + 1$, where $\phi(\cdot)$ denotes Euler's totient function.
- If $e_1 + e_2 = e$.
- If $e_1 = e_2 = e$.

Question 3

[6 points] Note: This is an **open** question. In the real exam, we will grade your arguments. Here for the quiz, we do not have the capacity to do this. Therefore, you will merely enter your final answer into a multiple choice grid on Moodle. However, do make sure to carefully look at the solution and compare to your answer. How many points would you have given yourself?

Consider the source S_1, S_2, \dots such that S_1 is uniformly distributed on $\mathbb{Z}/10\mathbb{Z}^*$, and for every $n \geq 1$, S_{n+1} is distributed uniformly on $\mathbb{Z}/(S_n + 1)\mathbb{Z}^*$. Answer the following questions.

- (a) (3 pts) Calculate the marginal distribution of S_2 .
- (b) (1 pt) Is the source stationary? Fully justify your answer
- (c) (2 pts) Show that $H(S_n | S_1, \dots, S_{n-1}) \leq (p_{S_{n-1}}(3) + p_{S_{n-1}}(5)) \log 2 + (p_{S_{n-1}}(7) + p_{S_{n-1}}(9)) \log 4$.
- (d) [Difficult, and not graded on the Moodle interface] Show that the probabilities in the right hand side of the above inequality converge to zero as n increases.

Question 4

[6 points] Consider an RSA encryption where the (p, q) are determined as $(67, 53)$. Check if the following encoding and decoding exponent pairs are valid.

- (a) $(e, d) = (123, 79)$ are valid exponents.

VRAI FAUX

(b) $(e, d) = (631, 223)$ are valid exponents.

VRAI FAUX

(c) $(e, d) = (319, 23)$ are valid exponents.

VRAI FAUX

Question 5

[3 Points] How many $x \in \{0, 1, 2, \dots, 34\}$ satisfy the equation $x^2 - 5x + 4 \pmod{35} = 0$?

<input type="checkbox"/> 2	<input type="checkbox"/> 1
<input type="checkbox"/> 0	<input type="checkbox"/> 4